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A new least-squares-type refinement algorithm which updates the parameter values after processing 
each reflection is tried in comparison with a standard block-diagonal least-squares refinement procedure. 
A ten-atom problem (C9S) in space group Fdd2, and a 30-atom problem (C26N4) in space group P21/c 
with varying-quality starting coordinate sets and choices of reflection/parameter ratios were used as test 
cases. With starting atomic coordinates off by at least + 0.2/~ from the correct values, the new method 
gives rapid convergence with considerable saving in computation time. The method also gives rapid 
convergence for both the good and poor starting coordinate sets when the reflection data set for the 
30-atom problem was restricted to d> 2 ,~. For this restricted data set the traditional block-diagonal 
least-squares method diverged. Computer storage requirements are essentially the same for the new 
method as for the traditional least-squares methods. 

Introduction 

Traditional least-squares refinement minimizes the 
quantity 

M 

D = ~ 02(al,..., aN) (1) 
m = l  

with respect to a list of N parameters a l , . . . , aN .  Here 
the index m designates one of the M reflections for 
which 6m=Wl/Z:F, klFm calcl), where Wm is an m \ m,obs-- 
appropriate weighting factor and the other terms have 
their usual significance. Since the 6m are non-linear 
functions of the parameters, a method of successive 
approximations must be used to find the point in 
parameter space where D is minimized. Traditionally, 
the parameters are changed after processing all M data 
items and these new parameters provide the starting 
point for the next cycle. In the terminology of this 
paper, this conventional method can be obtained by 
writing (2), expressing the value of the residual 
D(a+x) as a three-term Taylor's series expansion 
about the residual at the coordinate vector a: 

D(a + x )=  D(a) + xrVD(a) + ½xr[VVrD(a)]x 

= ~[6,.(a) + xTV6,.(a)] ~ 
m 

+½xr[ ~ Jm(a)VVTJ,,,(a)] x .  
tn  

(2) 

Here the transpose of any matrix is denoted by the 
superscript T, VD is the gradient of D, and VVrD is the 
N × N matrix of second derivatives of D. Application 
of the minimization condition V D ( a + x ) = 0  followed 
by discard of all second and higher-order derivatives 

of Jm gives the Gauss least-squares algorithm used in 
the conventional crystallographic least-squares refine- 
ment procedures to find the coordinate update x. In 
the current notation this is 

x = - [  Z vJmfv6,.)q-l( Z 6mv~). 
rn m 

The new method described here makes a small up- 
date to the coordinate vector a,, after processing 
reflection m so as to minimize ~0,,+1, a weighted sum of 
62 and preceding square terms, as defined by the equa- 
tion 

~0m + l(a,.) -- J~(a . )  + 2Jz~_ a(am) + 2262- 2(a.,) + . . .  
=j2(a, , , )+ 2%,(a,,). (3) 

Here 2 is a number between zero and one, usually very 
close to unity. As 2 is decreased from unity, the speed 
of convergence to the region about the minimum is 
increased, but the fluctuations in a about a mean value 
also are larger. In the limit as 2 approaches unity, and 
~P0 = 0, the value of ~0 approaches the value of D given 
by (1). The update procedure then calculates the new 
coordinate vector am+l to be used to obtain 6z+i for 
the next reflection. As a result, successive values of the 
coordinate vector a do not converge to a single value, 
but fluctuate about it with an amplitude which depends 
on the parameter 4. The approach to constancy of ~0 
replaces constancy of D as a criterion of convergence. 
On completion of one cycle through the reflection 
data, one may go back to the first reflection in the data 
list and continue the update procedure if desired con- 
vergence has not been achieved. The optimum set of 
parameters is obtained by computing the average of a 
over a number of reflections after satisfactory con- 
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vergence of (p has been reached, or alternatively after 
some arbitrary point is reached in the list of reflections. 
This will be discussed in detail later. Operating param- 
eters for the algorithm are then 2 and the number of 
reflections to be considered when finding the average 
(best) coordinate vector. A rough estimate of probable 
errors in the components of the starting coordinate 
vector is also needed as input. No matrix inversions 
are required in the new method. 

Derivation of the algorithm and more detailed 
justification of the new method will be published else- 
where (Davidon, 1976). We here attempt only to 
present the algorithm and to describe its use in the 
crystallographic refinement application. 

Inputs 
M 
L 

Algorithm 

Number of reflections in data set to be included. 
Convergence weighting parameter 

N X  Number of reflections in data set to be skipped 
before start of coordinate averaging for one 
cycle through the data set. 
N-dimensional starting parameter vector, in- 
cluding scale factor k, and all variable atomic 
coordinates and temperature factors. 
N-dimensional vector giving estimates of 
standard deviations for the input components 
of a. The set of reflection weighting factors, w, 
is presumed to have been scaled so that the 
final ~0 equals M - N ,  to within an order of 
magnitude. 

A schematic flow diagram of the algorithm is shown 
in Fig 1. 

In forming the N x N  symmetric A matrix, the 
updates create the off-diagonal elements. All such 
elements may be formed, analogous to full-matrix 
least squares, or a block or band-diagonal approxi- 
mation may be used by retaining only the elements of 

2=1-1//_. 

4=0 

a=l  

A. =S~ 
A u =0,i 4~j i , j= 1,N 

k. 
f 

I x=0 
j--1 

L 

STOP 

I 
S= wY~(Fj,o~:KIFj,.,o(a)I) 

g= V S=-wY2V (KIFj,.,o(a)I) 

a~ = 2o" 

h=Ag 
Q=tr-t-h.g a=a-ht~/Q 

x =x/(M-NX) 

output x,~ 

j = j +  l 

t 

, @  I 
d xL+. 
"l 

Fig. 1. Flow diagram of the algorithm. 
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the matrix product hOlT/Q) which relate to single atoms 
or to small numbers of highly correlated atoms. In the 
trials reported here, the atomic block-diagonal ap- 
proximation was used for A in which no interatomic 
terms were included. Only the upper triangle of each 
symmetric block was actually created and stored. 

The matrix A and the vectors g, h, a, and x require 
(K 2 + K)/2 + 4K, or (K 2 + 9K)/2 words of memory for 
each block of K parameters, and the update procedure 
with this algorithm then requires approximately (3K z 
+7K)/2 multiplications and divisions per block for 
each reflection. The conventional least-squares refine- 
ment method requires about (KZ+7K)/2 words of 
memory and (KZ+ 3K)/2 multiplications and divisions 
per block for each reflection in addition to approximate- 
ly Ka/2 + K z multiplications and divisions per block at 
the end of each data cycle to calculate a matrix inverse 
or otherwise solve simultaneous linear equations to 
find the coordinate update. The calculation of 6 and 
the gradient vector g are common to all methods. The 
ratio of computation time per data cycle, exchtsive of 
time for computation of 6 and g, for the new and 
standard methods is then 

(3+ 7/K)/(1 + 3/K + K/M).  

If K=4,  corresponding to the simplest block-diagonal 
approximation, this ratio of computation times, com- 
paring our method to the standard method, is then 2-7. 
If full-matrix methods are used, K becomes large and 
this time ratio approaches three for a reasonable 
reflection/parameter ratio. The common overhead 
time for calculation of ~ and g will reduce these ratios 
to give values nearer to unity; the new algorithm is 
seen to incur the least time penalty per data cycle for 
the block-diagonal approximation. Cases with many 
equivalent positions and/or atoms included in the 
structure factor calculation which are not refined will 
have times for calculation of 6 and g which become a 
large fraction of the total computation time and there- 
fore also give small time penalties per cycle for the new 
method. Savings for the new method then must result 
from some significant reduction in number of cycles 
required for convergence. 

Because of small fluctuations in the parameter (a) 
values computed for each reflection, even after con- 
stancy in ~p is achieved, the best or final parameter set 
is not the a calculated for the reflection processed im- 
mediately prior to stopping. For reasonably large L 
values the last a computed will not be greatly different 
from an average of a values computed for a large 
number of reflections: however, this average a will 
give a lower residual than that computed using the 
terminal a. Taking the parameter NX, as defined in the 
algorithm flow chart, equal to zero then results in 
taking an average over coordinates computed for all 
reflections in a single cycle through the data set. If the 
coordinates at the start of the cycle are poor, this aver- 
age will be unduly weighted by the early poor values for 
a. If the value of NX is large, so that ( M - N X ) / M  

is a near unity, the last reflections in the data list may 
have weight in determining the 'best' coordinates 
reported for the cycle. If the reflections are in random 
order in the data list, this would not be a concern. If 
there is systematic error associated with some index or 
scattering angle in an ordered data set, then some bias 
would be included in the 'best' coordinate set obtained 
from the average over the last ( M - N X )  values of a 
if the ratio ( M -  NX)/M is too small. Actual experience 
with varying the operating parameters L, NX, and s 
will be described later. 

Convergence comparisons 

Data for two crystal structures previously solved in 
this laboratory were used in trials of the new algorithm 
in comparison with a standard block-diagonal least- 
squares program. No comparisons were made with 
full-matrix methods, since it was felt that the greatest 
value in application of the new method would probably 
be for the largest problems for which the block- 
diagonal least-squares techniques are currently re- 
quired. In all comparisons which follow, BDLS refers 
to a reference calculation done with the standard block- 
diagonal least-squares techniques, and DAVM refers 
to calculations performed with the new algorithm. 
Data sets and initial crystal-model parameter values 
are identical in all such comparisons. The sensitivity 
of the new algorithm to the required input parameters 
was explored in some detail and the results will be 
summarized in the last section. The comparisons 
between BDLS and DAVM were run using 'reason- 
able' estimates for these operating parameters in 
DAVM. To compare convergence properties of BDLS 
and DAVM we present R= ~[Fob s -  [kFca,c [ [/~Fob s and 
D = ~.(Fob s -- [kFcal¢[) z after each cycle (one trip through 
the reflection data set) for both methods. These quan- 
tities were separately computed for the DAVM runs 
using the average of 'best' coordinates provided as 
output from each cycle, since the DAVM method does 
not permit calculation of exactly these criteria of con- 
vergence in the normal course of its operation. The 
quantity q~ computed by DAVM provides a monitor 
for convergence, but is not identically comparable to 
the residual D which is provided by BDLS and all 
other standard crystallographic least-squares programs. 

(a) Dicinnamyl disulfide 
This trial used the reflection data and corrected 

structure for the compound dicinnamyl disulfide, 
(CgHgS)z, space group Fdd2, as recently redetermined 
by Donohue & Chesick (1975). The asymmetric unit 
is C9H9S , and restriction of sin 0/2<0.55 and Fobs~ 
2"5aFobs selected 660 reflections for the calculations 
out of a total of 722 unique reflections observed. The 
'good' starting coordinate set for the ten C and S 
atoms used in the least squares calculation was derived 
from the sulfur-phased Fourier map; this coordinate 
set showed mean deviations of + 0.04 A in x, _+ 0.03 A 
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in y, and +0.08 A in z f rom the correct or refined 
coordinate set. A 'poor '  starting set was obtained by 
randomly  adding or subtracting (signs chosen by coin 
tosses) 0.27 A to each coord ina te  of  the good starting 
set. In both cases the scale factor and the isotropic 
thermal  parameter  used as input for all a toms were 
obtained f rom a Wilson plot. Both starting sets of  
coordinates were used in block-diagonal  isotropic 
refinement with one block per atom, and the better 
coordinate  set was used as the starting point for aniso- 
tropic refinement. The convergence parameters  ob- 
tained for these trials are shown in Table 1 along with 
the rat io of  computa t ion  time/cycle for the two 
methods,  D A V M  and BDLS. 

Table 1. Dicinnamyl disulfide comparison tests o f  B D L S  
and DA V M  operation 

Isotropic refinement 
Input R* 

9I" 
After cycle 1 R 

D 
After cycle 2 R 

D 
After cycle 3 R 

D 
After cycle 4 R 

D 
Cycle time ratio, DAVM/BDLS--1.23 

Good start:l: Poor start§ 
BDLS DAVM BDLS DAVM 
0"152 0"152 0.509 0"509 

35 532 35 532 451 202 451 202 
0"106 0"107 0"411 0"121 

18 431 19 464 381 133 23 862 
0-102 0 " 1 0 0  0 - 3 0 2 6  0"100 

16 595 16 372 177 071 16 410 
0"100 0"100 0"195 0"100 

16 369 16 196 62 835 16 367 
0"125 0"100 

24 847 16 375 

Anisotropic refinement 
Input R 0-152 0-152 

D 35 532 35 532 
After cycle 1 R 0.089 0.076 

D 14209 14044 
After cycle 2 R 0-074 0.072 

D 11 018 11 431 
Cycle ratio time, DAVM/BDLS = 1.49 

* R = EIFo- IkFclIIEFo. 
t D = E(Fo- IkFd) 2. 
1: + 0-04 ~ off in x, + 0.03 J, off in y, and + 0.08 tit off in z 

at start. 
§ +0.27 A off in each atomic coordinate at start. 

F r o m  Table 1 we see that  the performances per cycle 
for D A V M  and BDLS are virtually the same when a 
starting set of  coordinates is used which gives D within 
20 % of the convergence limit after one cycle of  BDLS. 
However,  if each of  the starting atomic coordinates is 
off by + 0.27 A, we see than one cycle of  D A V M  gives 
results which are better than four  cycles of  BDLS, and 
a second cycle of  D A V M  gives essentially the conver- 
gence values of  R and D. The reduction in number  of  
cycles needed for convergence by D A V M  greatly 
offsets the 23 % increase in time per cycle required. 
Small discrepancies between the R and D values for 
BDLS and D A V M  as convergence is reached may be 
explained by the difference in minimization procedures 
employed. Coordinate  values at  convergence do differ 
on the average by ½ to ½ of  the average s tandard devia- 

tions when compar ing the BDLS and D A V M  results at  
convergence. The two optimization procedures thus 
give essentially the same results. Operat ion of  the 
reference BDLS calculation to limit coordinate  shifts 
to not more than 0.15 A on each cycle and likewise 
limiting isotropic B changes to 2.0 A z on each cycle 
caused no improvement  in BDLS convergence for the 
poor  starting set. 

(b) Bisphenylazostilbene 

This compound,  C26H20N4, space group P21/c 
(Chesick, 1973) provides an example with 30 C and N 
atoms for refinement with a total da ta  set of  3113 unique 
reflections. A 'good '  starting coordinate  set was 
obtained f rom an E map using phases from a direct- 
method program.  This coordinate  set showed mean 
deviations of  + 0.05 A in x, y, and z f rom the correct 
(refined) values. A 'poor '  start  was again obtained by 
randomly adding + 0.2 A to each atomic coordinate  
of  the 'good '  starting set. Limitations of  sin 0/2 < 0.50 
and Fobs > 3aFobs selected the da ta  set of  2059 reflections 
included in the calculations for a reflection/parameter 
ratio of  17 for isotropic refinement. Interest  in refine- 
ment  of  very large molecules with a much less favorable 
reflection/parameter ratio, e.g. the protein rubredoxin 
at 1.5 A resolution with a ratio close to two (Waten- 
paugh, Sieker, Herr iot t  & Jensen, 1973) suggested 
repeating the BDLS vs D A V M  comparison for both 

Table 2. Bisphenylazostilbene comparison tests o f  B D L S  
and DA V M  operation 

Good start:l: Poor start§ 
sin 0/2<0.5 BDLS DAVM BDLS DAVM 
Input R* 0.281 0 . 2 8 1  0"669 0.669 

Dt  39 573 39 573 244 463 244 463 
After cycle 1 R 0.228 0.169 0.592 0"208 

D 22 571 13 560 171 185 21 108 
After cycle 2 R 0.172 0.159 0.458 0.162 

D 14 034 11791 92 969 12 228 
After cycle 3 R 0.163 0.159 0.362 0.158 

D 12 446 11 677 57 376 11 741 
After cycle 4 R 0-159 0.158 0-292 

D 11 805 11 630 38 200 

Cycle time ratio, DAVM/BDLS = 1.55 

sin 0/2 < 0.25 
Input R 0.203 0 - 2 0 3  0.537 0.537 

D 7 334 7 334 74 065 74 065 
After cycle 1 R 0.183 0.118 0.544 0.230 

D 5 105 2 435 40 543 11 710 
After cycle 2 R 0"172 0.102 0-454 0.118 

D 5 014 1 720 38 503 2 673 
After cycle 3 R 0.178 0.096 0.488 0.103 

D 6 438 1 462 55 296 1 880 
After cycle 4 R 0.176 0.094 0-60 0.098 

D 7 390 1 319 63 723 1 593 

Cycle time ratio, DAVM/BDLS= 1.22. 

* R=ElFo-lkFcll/EFo. 
t D = E(Fo - [kFc[) z. 
.1:. + 0"05 A off in each atomic coordinate at start. 
§ + 0.2 A off in each atomic coordinate at start. 
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starting coordinate sets with sin 0/2 < 0.25, or d>  2 A, 
which includes only 272 reflections (all of Fobs > 3aVobs) 
in the refinement. This gives a reflection/parameter 
ratio of 2-2. Only isotropic refinement, one atom/block, 
was done in the comparisons of the two methods for 
bisphenylazostilbene. The results of these comparisons 
are shown in Table 2. 

Table 2 shows that for the good start with the large 
data set, the smaller number of cycles for convergence 
of DAVM offsets the 55 % larger time/cycle required. 
The superiority of DAVM is rather striking when con- 
sidering the large data set and the set of starting 
atomic coordinates which are + 0-2 A from the final 
values. DAVM has essentially converged after two 
cycles, and BDLS will require seven or eight cycles for 
convergence. With the restricted data set, DAVM con- 
verges in two or three cycles, and BDLS diverges. The 
use of the set of starting coordinates with the + 0.2 A 
offsets only retarded the convergence by one cycle 
when using the DAVM calculation. 

Restriction of coordinate shifts to less than 0.15 A 
and isotropic B shifts to less than 2.0 A z on each cycle 
for BDLS trials with sin 0/2 < 0.25 still gave divergence 
with R and D values similar to those given in Table 2. 
This restriction of BDLS parameter shifts for the poor 
start with sin 0/2 >_ 0.5 gave values of R and D of 0.271 
and 29 617 after the fourth cycle, in contrast to the 
values of 0.292 and 38 200 shown in Table 2 for un- 
constrained shifts. Thus significant but not spectacular 
improvement was made in that particular BDLS 
reference calculation by limiting the parameter shifts. 
The number of cycles for BDLS convergence will be 
essentially the same. 

Operating parameters 

(a) Initial A matrix 
As the algorithm flow chart indicates, the initial A 

matrix is taken to be diagonal with the square of the 
estimated standard deviations or probable errors of 
the starting coordinates as the diagonal elements. 
These uncertainties in the initial atomic coordinates 
and thermal parameters are usually readily estimated 
or known from the nature of the source for the starting 
coordinate set. Trials using both the good and poor 
initial coordinate sets and also the limited data set 
indicated that the input s matrix used to initialize A 
is uncritical. Increasing or decreasing the best estimate 
of s by a factor of four made little difference in con- 
vergence in the most extreme case, the poor initial 
coordinate set using data for sin 0/2 > 0.25 in the bis- 
phenylazostilbene trials. With somewhat better start- 
ing coordinate sets an increase or decrease in the 

estimate of s by a factor of 10 seemed to have little 
effect on the speed of convergence. 

(b) Choice of 2 
The parameter 2 is generally close to unity in this 

crystallographic refinement application and is therefore 
most conveniently defined and discussed in terms of 
the variable L in the expression 2 =  1 - 1 / L .  The value 
of L also seemed to be relatively uncritical in the trials 
with the two data sets. The general experience seems 
to indicate that L should be at least two or three times 
the number of parameters and if possible in the range 
of M/3 to M, where M is the number of reflections in- 
eluded in the least-squares. In the bisphenylazostilbene 
trials with M =  272, L--500 gave slightly better results 
than L=250  when comparing the results after two 
cycles. L =  121 gave significantly poorer results. With 
the full data set for this compound ( M =  2059) L = 1000 
gave slightly faster convergence than L=480.  Again, 
the results indicate that L is not a critical operating 
parameter. 

(e) Coordinate averaging parameter NX  
Since most of the coordinate adjustment seems to 

take place in the first part of the first cycle through the 
data set, the selection of N X ¢ O  is of considerable 
importance only if the optimum coordinate set is to be 
provided from only one cycle. In this case trials suggest 
that a value of NX giving ( M -  NX) /M between ½ and 2 
is a reasonable compromise of the concerns mentioned 
earlier. If a coordinate set is desired after more than 
one computation cycle, then selection of a smaller NX 
value to give the nearer to unity is suggested. The trials 
reported here used a fixed value of NX for each cycle 
in a calculation of more than one cycle. A simple 
program change would permit variation of N X  with 
the cycle number if one wished to follow the changes 
lin the coordinate average from cycle to cycle. 
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